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Abstract 

Thanks to its high scalability, photovoltaics can be employed across various use cases. The primary motivation is often local 

self-consumption. Therefore, defining characteristic metrics is crucial, which are discussed in detail in this study, including 

underlying mathematics. Then the size of the PV system, the most significant influencing factor, is analysed, in terms of the 

energy generated to load ratio. While the sizing of the PV system is intended to provide a degree of freedom, there is an 

parameter that can involuntarily falsify the calculation of self-consumption: the temporal resolution of the time series used. 

Therefore, a sensitivity analysis is carried out to evaluate the extent of its impact. The author employs measurement data of 

unparalleled granularity, matching various loads with PV systems by simulation. The loads extend beyond the residential sector 

including a fast-food takeaway and a mixed commercial site. The latter, with its significantly higher electricity consumption, 

challenges the commonly held belief in the literature that the time resolution of the PV profile is always of secondary importance. 
Due to the high temporal resolution of some of the measurements of one second, reliable recommendations are made regarding 

minimum sampling rates. 

 

1. Introduction 

No other technology for generating electrical energy can be 

scaled as well as photovoltaics (PV). As a result, even small 

systems with just a few kWp can be implemented economically 

and safely. This has led to the installation of millions of PV 

systems, providing power where it is required. For the user, 

reaching a high degree of self-consumption of the electricity 

generated is generally the primary motivation. But a 

comprehensive grasp of this crucial metric is also essential for 
grid operators because any surplus electricity can be supplied 

to the grid when necessary. In many countries, including 

Germany, it is even mandatory for grid operators to do so. 

The level of self-consumption is determined by the 

synchronicity of generation and load. Due to the high volatility 

of the corresponding time series, the accuracy of the matching 

has a considerable impact on the outcome. This accuracy is 

defined by the temporal resolution of the time series. If the 
sampling rate is high, resulting in a low reciprocal value of 

temporal resolution Δt, the time series and the derived self-

consumption can be mapped with a high degree of detail. 

Not surprisingly, a substantial number of studies [1-7] in the 

literature quantitatively investigate the impact of temporal 

resolution on self-consumption—mostly in a similar fashion. 

To begin, the reference value for self-consumption is 
established at the highest resolution (Δtori). This resolution 

depends for example on the sampling rate of the measurement 

or on the best possible output of profile generators. Then the 

quality of the time series is artificially degraded to a coarser 

resolution and the self-consumption is recalculated. The 

resulting deviation is expressed as a relative ratio, representing 

the error. Table 1 presents the outcomes of several studies, 
summarising the initial resolution with the resulting error 

when averaged on an hourly basis. 

Table 1 Exemplary values from literature for the error of self-

consumption when averaging from the original temporal 

resolution to 1 h 

Reference Δtori Error 

 
[1] Ried 2015  1 s 17–19 % 

[2] Ayala 2018 10 s 9 % 

[3] Beck 2016 10 s 3–20 % 

[4] Stegner 2016 15 s 15–20 % 

[5] Sun 2020* 15 s 14–38 % 
[6] Jaszczur 2021** 1 min 6–14 % 

[7] Jimenez 2021 1 min 5–15 % 

*Sun use the difference in %-points and only one reference 

value of 21 % is given. So, the 3–8 %-pt from the reference 

translate to the indicated relative error. 

**Jaszczur indicates values for selected single days only. 

 

The literature unanimously agrees that the error in determining 

self-consumption rises as Δt increases. For detailed reasoning, 

please refer to the comprehensive explanation in [4]. 

Regardless of varying scenarios or specific conditions, the 



22nd Wind & Solar Integration Workshop | Copenhagen, Denmark | 26 – 28 September 2023 
 
 

 

2 
 

following can be summarised based purely on the 

mathematical causes: 

• The greater Δt, the greater the error 

• The error is necessarily always positive. 

• The error is higher when the time series are more volatile. 

• If the time series are at a similar level, meaning there are 

numerous intervals with comparable power values of load 

and generation, the error escalates. 

The last point is particularly relevant, because the optimisation 

goal when dimensioning a PV system is often to achieve the 
best possible balance between generation and load, i.e. the 

range more prone to error. 

Even though battery coupled PV systems are not the subject of 

this study, another fact should be mentioned [3-5]: 

• If an Electric Storage System (ESS) is used in combination 

with the PV system, the error in determining self-

consumption is greatly reduced, even for high Δt of 1 h. 

However, there is no contradiction but rather an almost 

similarly large underestimation of indirect self-consumption 

by the ESS added to the above-mentioned and still existing 

error of overestimating the direct self-consumption. Again, 

reference is made to [4], where the temporal averaging of the 

profiles is paraphrased with the existence of a virtual storage 

capacity, or, as [5] puts it: " In other words, the battery has a 

similar effect to simulating at low time resolution, but truly 

rather than erroneously." 

This study is in line with the literature in Table 1 in terms of 

objectives and approach. However, it contains two 

innovations. Firstly, the mathematical background for the 

calculation of characteristic values of self-consumption is 

dealt with in detail and dependencies are formulated in the 

form of new functional equations. Secondly, the data used 

represent a quality in terms of the granularity and duration of 
the measurements that, to the author’s knowledge, has not been 

achieved before. Above all, the use of measurement data 

collected from households, as well as a small takeaway 

restaurant and a mixed commercial area, presents a unique 

feature. This includes measurements with an extremely high 

temporal resolution of 1 s, that were carried out at three 

locations over a total period of more than one year. 

2. Methodology 

2.1. Data 

One source of data was the measuring campaign described in 

[8]. Load and PV profiles with a Δt of 15 s were recorded by 

enhanced smart meters with high completeness for the year 
2015. Data from this source will be referred to as Smart Meter 

data. Additional measurements were carried out within the 

InEs project (https://ines-winterlingareal.de) using different 

equipment, the Power-Energy Logger PEL103 from Chauvin 

Arnoux. This mobile instrument facilitates logging of voltage, 

current, power and energy values with a Δt of 1 s. It was 

temporarily used at three sites: at the Point of Common 

Coupling (PCC) of a mixed commercial site for 9 months, the 

former porcelain factory that is the subject of the InEs project, 

at the PCC of a fast-food takeaway for 3 months, and at the 

PCC of a home with two occupants for 8 months. Data from 
this source will be referred to as PEL data. The PEL data does 

not include PV measurements and its load profiles are matched 

with PV profiles from the Smart Meter data. To give some 

more details on the mixed commercial profile: The occupancy 

of the InEs site may vary, usually accommodating 10 to 20 

tenants. These may include various entities such as craft 

businesses like carpenters, small industries like metalworking 

companies, online retailers, as well as start-ups and small 

businesses in the technology sector. To the best of the author’s 

knowledge, only [3] contains data of comparable quality 

concerning volume, such as the number and length of 

measurements, and temporal resolution. 

2.2. Definition of self-consumption 

When installing a PV system to meet the local electrical energy 

demand, the self-consumption is calculated by matching the 

time series of the generated PV power (PPV) with the time 

series of the power demand or load (Pdem). These time series 
are considered as step functions with a constant temporal 

resolution (Δt), consisting of N power values (Pi) that are 

constant in each interval starting from and including ti. The 

considered time window (T) therefore has a duration of 

T = N x Δt (1) 

To calculate the overall Self-Consumption (ESC), which refers 

to the energy produced and consumed on site, the minimum 

value between the generation and the load must be determined 

for each interval separately. 

𝐸𝑆𝐶 = ∑ min({𝑃𝑃𝑉,𝑖 , 𝑃𝑑𝑒𝑚,𝑖}) × ∆𝑡𝑁
𝑖=1  (2) 

The PV yield EPV for T is given by 

𝐸𝑃𝑉 = ∑ 𝐸𝑃𝑉,𝑖
𝑁
𝑖=1 = ∑ 𝑃𝑃𝑉,𝑖 × ∆𝑡𝑁

𝑖=1  (3) 

The total electrical consumption (Edem) is calculated 
accordingly to (3) by integration of Pdem,i. Instead of the 

absolute value of ESC, the Self-Consumption Ratio (SCR) and 

Self-Sufficiency Ratio (SSR) are often of interest because they 

enable comparing different setups and applications effectively. 

SCR is also known as the supply cover ratio, while for SSR, 

the terms load cover factor and autarky are often used. Both 

these values are calculated similarly, relating self-

consumption to either the PV yield (in the case of SCR) or the 

total load (in the case of SSR): 

SCR = ESC / EPV (4) 

SSR = ESC / Edem (5) 

2.3. Self-consumption formulated as function 

SCR and SSR are the main protagonists of this study and are 

presented as a function of the main influencing variable, which 

is the size of the PV system—or a characteristic value derived 

https://ines-winterlingareal.de/
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from it. However, there are other parameters that also have an 

impact: 

• Location: climatic ambient conditions, seasonal variations 

• Orientation of PV modules: azimuth and inclination 

• Shape or complexity of the load time series: user 

behaviour, controllers, number and type of devices 

This list is by no means exhaustive, but is intended to give you 

an idea of the scope. 

The mathematical relationships between the characteristic 

values for self-consumption and functional dependencies will 

be explored in greater detail below. As previously stated, the 

size of a PV system is the most significant factor in real-world 

applications. However, using the installed PV module power 

to represent PV system size would require additional details of 

its positioning and orientation to draw conclusions regarding 

the power output. Instead, in order to increase comparability, 

it has proven useful to introduce an additional metric for the 

ratio of generated to required energy, the Prosumer Ratio (PR): 

PR = EPV / Edem (6) 

With which (4) can be rewritten as 

SCR = SSR / PR (7) 

A PR of 1 indicates a PV system that generates the exact 

amount of energy consumed during the time period T, 

regardless of the PV system’s characteristics, which 

corresponds with the term Zero Energy Building (ZEB) used 

for example in [2]. This feature makes PR a good proxy to 
represent the size of a PV system. Additionally, the modular 

nature of a PV system justifies the use of PR as a linear scaling 

variable with respect to the output PPV. It is therefore assumed, 

that if a PV system has a PR of 2, it will not only produce twice 

as much energy in T as an equivalent system having a PR of 1, 

but will also generate twice as much power during each 

interval i. 

This results in the subsequent usage of PV time series in this 

investigation. Initially, a measured PV profile is proportionally 

adjusted to a PR of 1 with respect to the load profile 

considered, and the index PVE is used for such a PV system in 

Equilibrium with the load. As a consequence of the definition 

of PR, EPVE is equal Edem. The simulated PV power can then 

be expressed as 

PPV = PR x PPVE (8) 

As an aside, since this study uses the ratio between production 

and consumption (PR) as the function variable, scaling the 

load curve Pdem could also have been an option to achieve the 

desired effect. However, in our experience, linear scaling of 

load time series leads to unrealistic synthetic profiles. For 

example, a household with higher consumption will normally 

use appliances more often and for longer periods of time, but 

will not use twice as many appliances in parallel. We therefore 
prefer to leave the load time series as measured and scale the 

PV side, although it would not have made a difference in this 

study. 

 
Figure 1 Exemplary curves for SCR and SSR as a function of 

the PV system size, indicated by the prosumer ratio  

a) detailed view on low PR values 

b) zoom out for trends toward infinity 

Figure 1 illustrates two sample curves for SCR and SSR 

plotted against PR. Subfigure a) provides information on the 

typical shapes at lower PR values, while subfigure b) extends 

the x-axis to illustrate the behaviour towards infinity. Two 

dotted lines indicate values of particular interest. Point A on 

the x-axis marks the PR value where the SCR falls below 1 for 

the first time. As SSR is equal to PR multiplied by SCR, see 

(7), this makes point A the spot where SSR diverges from the 

origin line. The second line labelled with B on the y-axis marks 

the horizontal asymptote of SSR. Equation (7) confirms the 
obvious hyperbolic trend of SCR towards infinity as the curve 

approaches the function B/PR from the lower side. 

2.4. Analysing the stochastic background 

The asymptotes A and B in figure 1 can easily be observed but 

their interpretation requires further investigation. Although 
PPVE is scaled to ensure that its integral over T is equal to the 

corresponding integral of Pdem, it does not guarantee balanced 

power values in each interval. Instead, a Performance Ratio at 

overall Equilibrium (PREi) can be calculated for each interval 

by 

PREi = PPVE,i / Pdem,i (9) 

PREi will differ from 1, i.e. equilibrium, in most cases. 

Generation and consumption within an interval are deemed 

balanced if 

PR x PREi = 1 (10) 

Thus, point A on the x-axis marks the PR at which the first 

interval (that with the highest PREi ratio) reaches its 

equilibrium. We will refer to these PR values as the tipping 

points (TPi) of an interval i and, rewriting (10), they are 

defined as the reciprocal of PREi 

TPi = 1 / PREi (11) 
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Exceeding the tipping point results in a surplus of power (PSP,i) 

within this interval, which would typically be supplied to the 

grid or curtailed. 

PSP,i = PPV,i – Pdem,i = ( PR – TPi ) x PPVE,i (12) 

As PR increases, additional intervals steadily reach their 

tipping point and contribute to the surplus, thereby increasing 

the total surplus of energy (ESP) and influencing ESC 

𝐸𝑆𝐶 = 𝐸𝑃𝑉 − 𝐸𝑆𝑃 = 𝐸𝑃𝑉 − ∑((𝑃𝑅 − 𝑇𝑃𝑖) × 𝐸𝑃𝑉𝐸,𝑖) (13) 

Please note that the sum in (13) only takes those intervals i into 

account, where the term PR – TPi is positive, indicating that 
PR has passed the respective tipping point. To maintain better 

readability, there is no inclusion of a respective case 

distinction in equation (13). By incorporating equation (13) 

into equation (4), SCR can be reformulated as a function of 

PR: 

𝑆𝐶𝑅(𝑃𝑅) = (𝐸𝑃𝑉 −𝐸𝑆𝑃) 𝐸𝑃𝑉⁄ = 1 − 𝐸𝑆𝑃 (𝑃𝑅 × 𝐸𝑃𝑉)⁄  

= 1−∑(
𝑃𝑅−𝑇𝑃𝑖

𝑃𝑅
×

𝐸𝑃𝑉𝐸,𝑖

𝐸𝑃𝑉𝐸
) (14) 

The first fraction following the sum symbol converges towards 

1 for high PR values. The collective sum of the second fraction 

EPVE,i/EPVE for all intervals likewise amounts to 1, providing 

an explanation for the fundamental form of SCR(PR): 

beginning at 1 and reducing to 0. To acquire a deeper 

comprehension regarding the contribution of each interval in 

equation (14), the term in the sum is presented visually in 

figure 2 as an example. It demonstrates that the corresponding 

function reaches zero when PR is equal to TPi, possesses a 

vertical asymptote at PR = 0, and a horizontal asymptote at 

EPVE,i/EPVE. The slope of the function at TPi, marking the 
initiation of its negative contribution to SCR(PR), is EPVE,i/(TPi 

x EPVE). 

 
Figure 2 Schematic curve for the sum term in (14) 

Thus, only the interpretation of the horizontal asymptote B of 

SSR remains, for which a value less than 1 is observed. At 

night, there will be intervals during which PPV is zero. In these 

intervals, the PV system can never cover the load, despite the 

value of PR. However, in all other intervals where PPV values 

are above zero, the PV generation will eventually suffice if PR 

is sufficiently high. Thus, the load can be split into a diurnal 
component Edem,diu and a nocturnal one Edem,noct. The horizontal 

asymptote B then represents the proportion of the load that can 

be supplied by PV 

B = Edem,diu / Edem (15) 

For the sake of completeness, a rewriting of SSR(PR) similar 

to (14) is given without derivation 

𝑆𝑆𝑅(𝑃𝑅) = 𝑃𝑅 − ∑
𝑃𝑅×𝑃𝑃𝑉𝐸,𝑖×∆𝑡

𝐸𝑃𝑉𝐸
+ ∑

𝑃𝑑𝑒𝑚,𝑖×∆𝑡

𝐸𝑑𝑒𝑚
 (16) 

Again, the calculation only considers intervals in the sums 
where PR exceeds TPi. For high PR values the first sum 

becomes PR, eliminating the first term. The remaining second 

sum then corresponds to (15). 

2.5. Sensitivity analysis regarding the temporal 

resolution  

The determination of the error of the self-consumption in 
dependency of Δt will be conducted as outlined in the 

introduction. The following questions are to be examined. 

1. Can recommendations be derived as to which temporal 

resolutions are necessary? 

2. Is the temporal resolution of photovoltaics of secondary 

importance, as is often claimed, for example in [3, 5]? 

3. How much does the aggregation of profiles reduce the 

error? 

3. Results and discussion 

3.1. Data plausibility check and processing 

When using data of such high resolution as in this research, 

measurement gaps are nearly inevitable. In the Smart Meter 

data case, lengthier gaps are primarily due to mobile signal 

failures or limitations. We believe that shorter gaps, consisting 

of a few timestamps, are caused by brief overloads of the 

computing units installed or delays in writing to the SD card. 

After analysing the data, the rule was established to linearly 

interpolate gaps of up to seven missing readings to achieve 

more consistent time series. The number seven was chosen 

because it frequently occurs in the measurement data as a gap 
length and not with regards to mathematical or physical 

considerations. Incorporating this gap length in the correction 

procedure helps to attain a higher completeness level. With the 

PEL data, even a shorter interpolation would be sufficient as, 

in most cases, only single measured values are missing. 

Regarding temporal aggregation, i.e. the deliberate reduction 

of resolution by averaging, there are two ways to handle 
measurement gaps that remain after the linear interpolation. In 

the more stringent approach, any missing value within the 

analysed interval results in an NA value. This would result in 

time series with a considerably reduced scope, given that 

during subsequent matching, i.e. the simultaneous observation 

of generation and load profiles, a singular missing value 

suffices for removing the entire interval from the balance. The 

resulting lower energy quantities would reduce the 

significance of the result. In the second version, NA values are 

ignored and already one measured value per interval triggers 

the calculation of a valid mean value. This variant is afflicted 

with a certain inaccuracy, but allows significantly more 
intervals to be taken into account. Unlike the stringent 

 

0   PR 

TPi 

EPVE,i 

EPVE 
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approach, the total energies EPV and Edem can also rise here 

with increasing Δt, but the relative changes are significantly 

less than 1 % in the used data, with the exception of one PV 
system. For that reason, the second, less restrictive version is 

applied in this study. 

3.2. Function analysis 

As previously explained, the functions SSR(PR) and SCR(PR) 

can be easily described at both ends, for low PR values until 

reaching the first tipping point and towards infinity. However, 
describing the behaviour in between and fitting it with a proxy 

function is more challenging. Of the two, SCR is the more 

illustrative candidate, so equation (14) shall be considered. 

The shape of the curve from reaching the first tipping point 

until the last is defined by two aspects: 

1. The frequency distribution of the tipping points, since they 

trigger whenever a new interval is included in the sum 
2. The magnitude of the negative contribution of each interval 

to SCR(PR), defined by EPVE,i/EPVE 

Regarding the first point, figure 3 depicts the tipping point 

probability density function for a specific load and PV 

combination. The histogram displays characteristics of a right 

skewed density function. 

 
Figure 3 Tipping point density histogram as grey bins with 

fitted probability density function as different lines 

Table 2 Results of the fitting of various distributions types to 

the histogram in figure 3 

Distribution 1st 

param. 

value 2nd 

param. 

value 

 
Cauchy location 0.1839 scale 0.1489 

Gamma shape 1.7922 rate 4.6413 
log-normal meanlog -1.1361 sdlog 0.8823 

Weibull shape 1.3791 scale 0.4280 

 

When attempting to fit the histogram’s shape using known 

asymmetrical distributions, such as Gamma, Cauchy, log-

normal and Weibull, the log-normal distribution appears to be 

the most suitable. Cauchy comes close but approaches zero too 

quickly. Nevertheless, it should be noted that the histogram 

reaches high tipping point values far to the right. The further 

this range is considered when fitting, the less well the initial 

peak at low tipping point values can be mapped. The resulting 

parameters for the fitted distribution functions are summarised 

in table 2. 

The distribution of tipping points thus determines how quickly 

SCR and SSR approach the hyperbola B/PR and horizontal 

asymptote B respectively. With regard to dimensioning PV 

systems, individual, low tipping points are not advantageous, 

as they lead to high surpluses. Intervals with high tipping 

points are equally disadvantageous, as they can only be 

completely covered with large PV systems. Load management 

or shifting generation through differently oriented PV modules 
could help alleviate both phenomena. In a fictitious, ideal 

scenario, all tipping points would have identical values. This 

indicates that the shape of generation and load are perfectly 

matched, hence only the PV system needs to be adjusted in 

size. It should be noted that this common value of the tipping 

points would not be 1, but equal to B, as only Edem,diu needs to 

be covered. The course of the corresponding SSR curve would 

follow exactly the origin line until the intersection with 

asymptote B is reached, thus revealing the value of PR that 

would be needed to reach maximum self-consumption with no 

surplus, namely also B. 

The benefit of using established distributions is that they also 

define a cumulative distribution function. The trajectory of the 

SCR function from 1 to 0 resembles such a curve. However, 

the individual intervals do not contribute to the decrease of 

SCR with their frequency, i.e. the value 1, but with the term 

EPVE,i/EPVE, see also the second point above. This represents a 

kind of weighting of the intervals. Therefore, it is necessary to 

examine whether there exists a correlation between the value 
pairs of the tipping point and EPVE,i/EPVE or if they are 

stochastic, i.e. independent. Figure 4 reveals their 

corresponding 2D frequency distribution as a heat map, which 

demonstrates a distinct functional connection that resembles a 

hyperbola. 

 
Figure 4 2D frequency distribution of the tipping points and 

the term EPVE,i/EPVE with additional histograms over each axis 

The hyperbolic trend displayed in Figure 4 leads to high values 

of EPVE,i/EPVE at small tipping points. It should be recalled that 

the shape of the SCR curve arises from subtracting several 

curve segments, as illustrated in Figure 2, from the horizontal 

line at SCR = 1. Segments starting early at low PR are more 

frequent and contribute more significantly, as seen in Figure 4, 

thereby increasing the distribution’s skewness. 
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3.3. Error of the self-consumption in dependency of Δt 

For the evaluation, the three loads from the PEL data and the 

seven residential loads from the Smart Meter data (labelled 

load 1 to load 7) were individually matched with one of the 

seven PV profiles (also Smart Meter data). A further, 

aggregated load profile was created by accumulating the seven 

residential loads similar to [7], labelled acc. Loads. To also 

add the residential profile from the PEL data to the latter was 

not possible, as it does not cover a whole year yet and, since it 
stems from a different year, working days do not match. The 

study varied PR across a wide range and gradually increased 

the temporal resolution from Δtori to one hour, independently 

for the load and PV profiles. In this manner, around 180,000 

permutations were simulated and, thanks to the high 

completeness, meaningful ESC values were calculated—in the 

case of the PEL data over periods of different numbers of 

months, in the case of the Smart Meter data over one year each. 

The resulting values for SCR and SSR at Δtori are summarised 

in figure 5. It becomes apparent that for SSR the respective 

height of B does not necessarily correlate with the speed at 
which the curve approaches the asymptote, an outlier being the 

fast-food takeaway. One possible explanation for this is that 

because of the non-operating days with low base load, surplus 

is already generated at low PR, but the remaining load on 

weekdays and Saturdays correlates very well with generation, 

resulting in the maximal horizontal asymptote of its SSR(PR). 

 
Figure 5 Ratios of self-consumption against different PV sizes 

The self-consumption error was computed as the difference 

between ESC and the corresponding reference value at the 

original resolutions, divided by that same reference value. 

Regardless of whether SCR or SSR were used instead of ESC, 

the resulting relative error is identical. The selection of the PV 

profile has negligible impact on the outcomes. Therefore, this 

paper solely focuses on the combinations with one PV system, 

specifically the measurement with the highest degree of 
completeness. Figures 6 and 7 summarise the results for the 

Smart Meter and the PEL load profiles respectively. 

 
Figure 6 Resulting error in the calculated self-consumption 

when the temporal resolution of the load (left column) and the 

PV (right column) is degraded for the seven residential Smart 

Meter loads and their accumulated profile 

The following main findings can be observed: 

• The relative error peaks at PR values of 0.4–0.6 when 

varying the load’s temporal resolution. 

• In case of varying Δt of the PV there are two trends: For 

the loads with higher demand (mixed commercial site, fast 
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food takeaway and the accumulated households) the peak 

shifts to higher PR values of 0.5–1. For individual 

residential profiles the error rises towards the two extrema 
of PR to the left and right. 

• The load’s temporal resolution has a higher impact on the 

increase of the error than the PV with exception of two 

scenarios: the mixed commercial site and the accumulated 

households. 

• Accumulated loads like that of the seven residential 

profiles or the mixed commercial site exhibit lower error 

values.  

 
Figure 7 Resulting error in the calculated self-consumption 

when the temporal resolution of the load (left column) and the 

PV (right column) is degraded for the three PEL data locations 

Three questions were outlined in section 2.5. and their 

investigation is summarised as follows. The PEL data falls 

short of the Smart Meter data in terms of their scope, 

specifically the number and duration of measurements. 

However, PEL were used not only in the residential sector but 

also in the commercial sector, including a fast-food takeaway 

and a mixed commercial area. The respective energy 

consumptions are ca. 65 kWh and 1.000 kWh on a weekday 

for the takeaway and the mixed commercial site of project 

InEs. On Sundays and public holidays they are much lower at 
8 kWh and 400 kWh each. Additionally, the PEL data 

provides better temporal resolutions than the Smart Meters’ 

15 s recordings. In order to provide a recommendation on the 

necessary temporal resolution, the PEL data are therefore 

particularly suitable due to their Δt of 1 s and the cross-sectoral 

use cases. A limit of 3 % is chosen as the acceptable error 

threshold. Figures 6 and 7 illustrate that a single, temporal 

minimum resolution cannot be derived. Instead, deviations are 

heavily influenced by the load profile's character and the PR 

value. To answer question 1, PR is set as 1 as this ratio is a 

practical and standard dimension for real-world applications. 
Figure 8 illustrates the acceptable error threshold of 3 % using 

a capped y-axis. Additionally, it provides information about 

the simultaneous degradation of both profiles' resolution. 

Some scenarios already exceed the acceptable error limit at a 

Δt of 1 min, while almost all do so at 15 min. 

 

Figure 8 Condensed results with PR = 1 and limited y-axis 

In relation to question 2, the effect of the load's temporal 

resolution seems to be generally greater. However, due to 

opposing outcomes observed for the cumulative profiles, a 

definitive conclusion cannot be reached. Regarding question 

3, it was previously noted that accumulating loads decreases 

the error. For the two such profiles in this study, even a Δt of 

15 min would remain within acceptable limits. 

4. Conclusion and outlook 

This study adds to the existing research on the influence of the 

temporal resolution on the PV self-consumption with two 
significant contributions. Firstly, a comprehensive analysis of 

the mathematical fundamentals is conducted. The obtained 

insights are valid irrespective of scenario-specific conditions 

and are relevant wherever time series of generation are 

matched with those of load. Thus, the dissection of the SCR 

and SSR function into intervals and the analysis of the 

stochastic influence are transferable to the use of other sources 

of energy too. 

Secondly, the self-consumption of PV electricity is calculated 

under various scenarios. The evaluation extends the bandwidth 

compared to current literature by including the commercial 

sector in addition to residential loads and measurements with 

a temporal resolution as low as 1 s. The results thus provide a 

comprehensive and realistic insight into the expected ratios for 

self-consumption. The potential errors of coarser temporal 

resolutions are also analysed. The results exhibit a wide range, 

and further investigation is required to determine the factors 

that affect it, such as PV module orientation, total consumption 

and load profile characteristics. Especially for the 
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categorisation of load profiles with regard to their 

characteristics, there is a great need for research. A valuable 

overview of methods is provided in [9] and great potential is 
seen in the so called complexity measures introduced there, an 

assumption the author of the presented study endorses. 
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